Skip to content

Maximum Likelihood Estimation

Likelihood

Probability of observing data \(x\) according to pdf \(p(x)\)

\[ \begin{aligned} L(p) &= Pr_q(x) \\ &= \prod_{i=1}^n p(x_i) \\ \implies \log L(p) &= \sum_{i=1}^n \log p(x_i) \\ \end{aligned} \]

Maximum Likelihood Estimation

Chooses a distribution \(p(x)\) that maximizes the (log) likelihood function for \(x\)

Below example shows MLE for a single point

image-20240214234007807

MLE for Regression

\[ \begin{aligned} \log L &= \sum_{i=1}^n \log \Bigg\{ \dfrac{1}{\sigma \sqrt{2 \pi}} \text{exp} \left( \dfrac{-1}{2 \sigma^2} u_i^2 \right) \Bigg \} \\ &= \dfrac{-N}{2} \log(2 \pi) - N \log \sigma - \dfrac{1}{2\sigma^2} \underbrace{\sum_{i=1}^n u_i^2}_\text{RSS} \end{aligned} \]
\[ \min \log L \\ \implies \dfrac{\partial \log L}{\partial \beta} = 0 \]
Last Updated: 2024-05-12 ; Contributors: AhmedThahir

Comments